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3.1 Introduction

The work described here is based on the completion of the second year of a five
year research program designed to answer fundamental questions about the use of
knowledge-based systems in communications network management and control. We have
developed an architecture for a diversely distributed, multi-agent system in which each
component is a specialized and localized knowledge-based system designed to provide
assistance to the human operator and to cooperate with similar such systems performing
other functions and/or located in physically separate facilities. This view of the role
of a knowledge-based system as a collection of autonomous, cooperating independent
specialists is an important characteristic of our approach to distributed network
management.

Modem communications systems, such as the Defense Communications System (DCS),
are highly complex collections of equipment and transmission media which currently
require, in varying degrees, human intervention for control. The control task is one
which requires extensive, specialized knowledge and the ability to reason using this
knowledge in solving problems. In the past, system control has been a difficult area to
automate because the number of situations which may arise and alternative solutions
available are very large, and thus traditional, purely algorithmic approaches have been
found lacking.

In our work we have developed a model for communications system management,
based on the DCS in Europe. From an in-depth analysis of the problem domain, including
field site visits and interviews with operating personnel, we have identified specific
problem solving tasks which we believe are suitable for a knowledge-based system. We
found three fundamental kinds of knowledge-based problem solving activities required:
(1) data interpretation and situation assessment; (2) diagnosis and fault isolation; and
(3) planning for resource allocation. In addition to this functional distribution of
problem solving activities, our model requires a spatial distribution of decision making
as well. We have designed an architecture to meet these requirements which consists of 0
a distributed knowledge-based system built on a community of problem solving agents.
Each agent is a functionally specialized knowledge-based problem solver at a specific
site. These agents coordinate and cooperate to solve global problems among themselves,
crossing functional or spatial boundaries as required.

0
An important feature of this architecture is the concept of a local, shared

knowledge base. Although each problem solving agent has its own, private knowledge
about how to perform the specialized problem solving activity for which it is
responsible, much of the knowledge needed for problem solving is related to the
communication system. This knowledge describes the network structure and organization,
the details of different equipment types, and what is known about the current state of
the communications system. Since this knowledge is spatially distributed, and shared
among the other functional agents at the same local site, it is implemented as a single
local knowledge base for each site. An implicit assumption is that each control site
only maintains detailed knowledge about the communications equipment and circuits which
are within its region of responsibility, and the local knowledge base contains only very
limited knowledge about the system outside the local area.
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At the present time we have implemented a Distributed Al System (DAISY) testbed
which supports simulation of multiple agents on a group of heterogeneous LISP
processors. The DAISY testbed incorporates two system building tools which we developed
during this effort. SIMULACT is a generic tool for simulating multiple actors in a
distributed Al system and is described in section 3.2. In section 3.3 we describe a
graphical user interface (GUS) which assists a user in capturing structural knowledge
about a communications system. We have also made significant progress in designing a
distributed planner for resource allocation. This work has led to the formulation of a
new distributed problem solving paradigm we call Multistage Negotiation. Section 3.4
illustrates the operation of multistage negotiation with an example problem involving
the restoration of communications service following an outage.

Y
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3.2 Distributed Simulation Environment 3

3.2.1 Introduction

In this section we discuss SIMULACT, a tool we have developed for simulating and
observing the behavior of networks of distributed systems. Unlike many other systems
for simulating distributed environments [2, 6, 19], the goal of our system is not
primarily one of achieving speed of execution through parallelism. Instead, it is
assumed that the application is inherently distributed, and a natural framework for
investigating network behavior is provided. Our system is useful in simulating
distributed systems in which processing agents collectively work together towards "

satisfaction of one or more goals. It is assumed that each agent runs asynchronously
and can only communicate with neighboring agents through an exchange of messages. In
addition, the activities performed by each agent are assumed to be complex, so that the
parallelism is coarse grained.

SIMULACT is written in ZetaLisp and extended Common Lisp. It currently runs on
the SYMBOLICS 3600 and the TI EXPLORER Lisp machines. Our implementation makes
extensive use of flavors to improve data encapsulation and facilitate the modeling of
environments in which a group of semiautonomous processes do not share common memory.

.
3.2.2 System Structure

SIMULACT is a distributed time driven simulator capable of achieving improved run
time performance through the application of event driven and parallel programming
strategies. In this subsection, we describe the major components of SIMULACT at a high
level. A discussion of the simulation strategy employed by SIMULACT and some of the
implementation details are found in [15].

SIMULACT has a modular structure comprised of four component types: Actors,
Ghosts, Directors, and an Executive Director (see Figure 3-1). Actors play the part of
processing agents in a distributed system. Multiple instances of agents of the same
type in a system are easily incorporated in SIMULACT without requiring any special code
development on the part of the user. Ghosts generate information about the environment
that naturally occurs in a "real" distributed system and do not represent any physical
component of the distributed system being simulated. The Director is responsible for
controlling the simulation and all interactions between Actors and Ghosts at each host
(there is one Director for each Lisp machine in the network). Finally, the Executive
Director coordinates a simulation distributed over a network of Lisp machines. In V
general, Actors play the role of the entities being simulated, while the Director stays
backstage, attempting to get realistic performance from the Actors. In the paragraphs
which follow, the role of each of these system components is described in more detail.

Actors in SIMULACT closely resemble the entities which Hewitt calls Actors [12].
Hewitt's Actors are self contained entities which work cooperatively in performing
computation and can only be accessed via message passing. Sending and receiving
messages are considered to be atomic operations, and messages are accepted one at a time S
in the order they arrive. Each message, when evaluated, may influence an Actor to
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Figure 3-1 SIMULACT's Structure
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create new Actors, send new communications to other Actors, or to specify the manner in
which it will handle new messages.

In SIMULACT, Actors are also self contained and represent the fundamental S
structure used to simulate concurrency. Our Actors communicate asynchronously by
routing messages through the Director. Each Actor in SIMULACT has a "stagename" that is
known by its Director and is used in routing these messages. When a Director is asked
to transmit a message, it does so by either updating the appropriate Actor's "mailbox"
directly, or routing the message to the appropriate Lisp machine through the Executive
Director (if the destination agent resides on a different host machine in the network).
When an Actor decides to read its mailbox, it has the responsibility of preserving the
incoming messages and choosing which one, if any, it will currently respond to. The
content and form of messages are independent of SIMULACT, and are determined by the
application programmer.

The connectivity of Actors may be 'ixed or dynamic depending on the physical
system being simulated. In a rigidly connected system, each Actor knows the stagenames
of Actors with whom it can directly communicate. It is also possible for an Actor to
know of the existence of a distant Actor to whom it can indirectly send a message. In " .
simulations where the physical connectivity is allowed to change depending on the
current state of the system, SIMULACT provides the capability of generating and managing
appropriate stagenames on demand. This is analogous to situations in which Hewitt's
Actors spawn new Actors.

One issue which must be addressed in any simulation is the representation of
events which occur in the external world and may have impact on the state of the __

simulation. Examples include external inputs to the 3imulation from its "global
environment" as well as inputs which reflect the "side effects" of the simulated , ,
system's activity. Ghosts give the application programmer a facility for injecting
these factors into the simulation. For example, a Ghost can use its own event-list to .
send an Actor a message signaling the occurence of some event at a given time. A
Ghost's event-list can easily be altered to investigate the performance of the simulated .
system in subsequent runs. Ghosts can also be used to inject noise, or wrong
information into the simulated system so that issues associated with robustness can be -. ',..,

easily investigated.

Actors and Ghosts are referred to as Cast members in SIMULACT, since they are very
similar in structure. Each Cast member has a top level function associated with it
referred to as a "script function". The script function is written by the application
programmer and is invoked by SIMULACT to initiate each Cast member's simulation.
Differences between these two cast types are specified (in implementation) through
daemons associated with the Actor and Ghost data types. These differences arise from
the fact that Actors represen! the physical system and must be carefully controlled to
achieve a realistic simulation. On the other hand, Ghos, arc considered part of the
overhead associated with the simulation.

Since SIMULACT is a distributed simulator which runs on a network of Lisp
machines, mechanisms for controlling activity among several agents resident on a single S
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host must be provided. Each host in the network uses a Director to control the activity
of Cast members residing at that site, and to route messages to and from these Cast
members. Inter-host coordination is managed by the Executive Director.

The Director delegates the task of controlling Cast member activity to the Grip.
The job of routing messages to and from Cast members is given to the Messenger. The
responsibilities of the Grip range from setting up and initializing each Cast member's
local environment to managing and executing the Actor and Ghost queues. The Messenger
only deals with the delivery and routing of messages. When a message is sent, it is
placed directly into the Messenger's "message-center". During each time frame, the Grip
invokes the Messenger to distribute the mail. Whenever the destination stagename is
known to the Messenger, the message is placed in the appropriate Cast member's mailbox.
Otherwise, it is passed to the Executive Director's Messenger and routed to the
appropriate Host.

S

There is one Executive Director in SIMULACT which coordinates the entire
simulation over a distributed network. The Executive Director provides the link between
Directors necessary for inter-machine communications, it directs each grip so that
synchronization throughout the network is maintained, and it handles the interface
between the user and SIMULACT.

3.2.3 Simulation Strategy

In this subsection, we describe the simulation strategy employed by SIMULACT
without giving extensive details regarding implementation. In SIMULACT, the components f -,
of the physical system being simulated are modeled solely by Actors. Only Actors need
to be considered when determining the current "real time" associated with a simulation.
For this reason, each instance of an Actor is implemented as a process on a Lisp
machine. In general, an Actor's script function is written by the application
programmer so that it never "terminates". At any given time, the amount of CPU time
spent by the Lisp machine in executing an Actor's script function can be determined.
This CPU time, along with the Actor's CPW time (Controlled Program Wait time, or the
time spent idle but waiting for response to messages sent), is used in computing the
ela ,ed real time for a given Actor.

A Director is responsible for controlling the simulation on the host machine where
it resides. Each Director has two local state variables referred to as actors and •
ghosts. The scheduling queue used by SIMULACT in controlling the simulation (relative
to each host) is comprised of these two components. The Director advances the
simulation locally by one time frame as follows:

(1) When the Executive Director signals the Grip to begin executing a time frame,
the Director's current elapsed time is set to the minimum elapsed time of its
dependent Actors.

(2) The C rip invokes each Ghost in the ghost queue in a round robin fashion for
their current effect on the simulation.
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(3) The Messenger distrutes all messages present in its message center. Any
message with an unki.own destination is routed to the Executive Director.

(4) The Grip signals the Executive Director that it has completed step (3) and -
enters a wait state. This wait state is maintained until all Grips have
finished this step.

(5) When the Executive Director signals the Grip to continue, each Actor is removed
from the actor queue in a round robin fashion, and

- if it is active, it is allowed to run for one time frame.
- if it is not active, its CPW time is incremented by one time frame.

(6) Go to (1).

From a network perspective the simulation can be viewed as follows: S

(1) SIMULACT's current elapsed time has value (n)(time-frame).

(2) The Executive Director sends each Director a message to begin executing a time
frame.

(3) The Executive Director collects all inter-machine messages from each Director,
and distributes them accordingly.

(4) The Executive Director sends each Director a message to continue executing the
current time frame.

(5) SIMULACT's current elapsed time is incremented by one time frame (n=n+l).

(6) Go to (1).

Notice that for each time frame, messages are distributed after all the Ghosts have been
invoked. These messages include the current ones just generated by the Ghosts, plus any
Actor messages generated during the previous time frame. It is the responsibility of
each Cast member to read its mailbox in order to receive these messages, which are
tagged with the time of origination. If required, the application programmer can A,

specify a delivery delay time appropriate for the physical system being simulated.

An example of SIMULACT's simulation strategy is depicted in Figure 3-2. The
simulation consists of six Actors (A, B, C, D, E, F) distributed over two hosts. During
the first time frame, Host 1 allows Actors A, B, and C to run for one time frame each.
Likewise, Actors D, E, and F each run for one time frame on Host 2. Neglecting all
overhead (including Ghosts) one simulated time frame requires three time frame units to
execute. After both machines have completed execution of the current time frame, the
next time frame begins.

Allowable time frames in SIMULACT may range from one sixtieth of a second to ,

several seconds. The user specifies his own time frame during system initialization.
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Figure 3-2 Simulation Coordination

3.2.4 SIMULACT'S User Interface

SIMULACT provides the application programmer with a tool for simulating and
investigating the behavior of networks of agents. Application code is written for each
agent in Lisp as though there were as many machines in the network as agents in the
system.

SIMULACT has three initialization modes: New World Generation, Old World
Load, and Current World Edit. The generation of a new world in SIMULACT is a menu
driven process in which the application programmer specifies the details required to do
the simulation. This includes initializing the Executive Director, the Director on each
host, and every Cast member. Once the generation of a new world in SIIMURLACT has been
completed, the user has the option of saving it to disk. The Old World Load facility
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subsequently loads this information into SIMULACT, without involving the user. The
Current World Edit option loads an old world into SIMULACT, and then allows the user to
edit it. This is a convenient mechanism for running subsequent simulations with minor
alterations. s

Initializing the Executive Director configures the Lisp machine network and sets
up the user interface. The user must specify the number of hosts involved in the
simulation, and set such parameters as the time frame size and the simulated start
time. This allows SIMULACT to initialize the gauge facility, which is that part of the
user interface which provides control over the simulation (mode select gauge), displays
the current simulated time (elapsed time gauge), and allows the application programmer
to monitor domain specific characteristics. The initialization of the Executive
Director is not complete until all Directors are initialized.

Director initialization is done locally at each host and includes initializing the S
Cast and their environments. After each Cast member is initialized, the Messenger makes
an entry into its "address-book". The address-book is an association list linking a
Cast member's stagename to its corresponding Lisp object, and is used to route memos.
Director initialization also alters the host machine's operating system to accomodate
the specified time frame size.

Each Cast member runs in its own package [22], so it cannot directly access any
other Cast member's local state. This ensures that all communications among Cast
members are directed through SIMULACT. Each Cast member has one or more initialization
files associated with it. These files contain code written by the application
programmer describing all activities performed by the Cast member. The Cast member's
script function must be contained in this code.

Each Cast member is also given a stagename during initialization. As has been
mentioned, these stagenames are used by the Director's Messenger in routing memos. In
addition, each cast member is associated with a window pane on the console's screen
during initialization. The typical user interface functions (i.e., print, read, etc.)
are shadowed bo that the user can access each cast member easily through these windows.
The collection of all Cast panes makes up the Director's window frame. SIMULACT's
interface allows the user to display one Director frame at a time. It also notifies the
user when a deexposed frame needs attention.

Since each Cast member maintains its own independent local state, multiple
instances of the same Cast type can lead to multiple copies of code. To reduce this
costly overhead SIMULACT allows Cast members to use Support packages. A Support
package contains code that can be accessed by several Cast members, thus reducing memory
requirements. As in any shared memory system, a problem could arise whenever a Support
package accesses or alters global information. The underlying assumption concerning
independent environments for each Cast member would be violated. To guard against these
problems, SIMULACT detects the potential occurrence of improper accesses and warns the
user when a Support package tries to instantiate a global variable. Ideally, Support
packages should contain purely functional code. However, this restriction would
severely restrict the amount of code that can be placed into Support packages.
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There are two ways to use Support packages other than for purely functional code.
One way is for a Cast member to pass a local data structure as an argument to a Support
package function. If that function is "for effect", the result could then be bound 1 1..10
appropriately. The other method requires the application programmer to use SIMULACT's
"sim-set" function. Basically, the sim-set function allows the Support package to alter
a global variable that is present in each of the Cast packages. The goal of the Support
package facility is to reduce simulation overhead. Use of support packages does reduce
the overhead, but it does so at the expense of requiring that the user have more
knowledge about SIMULACT's implementation than is desirable.

3.2.5 Summary

In this section, we have described SIMULACT, a tool we have developed for
simulating and observing the behavior of networks of distributed processing agents.
This system is currently running as one component in our testbed for investigating
problems in distributed artificial intelligence. Our current network configuration
contains three Lisp machines.

The system has been particularly useful as a tool in the development of a
distributed planning system [3]. It has been used to expose the nature of message
traffic in this planner and to develop and debug plan generation in a distributed
environment. SIMULACT is also being used as an aid in the development of a distributed
diagnosis system. We have found that its modularity and transparency permit us to
concentrate on the development of agents which exhibit the desired characteristics
rather than on the problems associated with managing the distributed environment.
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3.3 Graphical User Interface

3.3.1 Introduction

One important phase in constructing knowledge-based systems is that of knowledge
acquisition. The relevant knowledge must be identified, formalized, and represented.
Application domains which involve reasoning about physical systems usually include
knowledge about the structure of the target system. For this reason, we have designed
and implemented a tool to assist an expert in conveying structural knowledge to a
machine. Although the present design is directed toward a specific application domain,
the design principles employed are domain independent.

When a knowledge engineer questions an expert about problem solving for some
physical system, the expert will often begin with a sketch of system components and
their interconnections. The symbols used by the expert to represent components and
interconnections comprise a language for structural knowledge description. Verbal
reasoning and explanation proceed, with the expert using the sketch as an aid in his
explanation. It seems clear that a diagram of a physical system often embodies what is
known about structure. This knowledge is represented using a set of graphical symbols
that are specific to the domain of interest. For this reason, a graphical interface for
capturing of structural knowledge should be built upon the symbols used by the expert
for structural knowledge description. Part of the gap between expert and machine is
bridged by providing a common language.

Structural knowledge of a physical system embodies the components of the system,
the behavioral characteristics of these components, component connectivity, and system
behavioral characteristics derived from component behavior propagated along
connections [1]. Example domains for which structural knowledge is an inherent property
include communication networks, automated factory configurations, and electrical
circuits. The significance of structural knowledge to our research in distributed
problem solving lies in its role in problem solving activities. In the communication
network domain, these include fault isolation, service restoral, and performance
assessment. Each of these problem solving activities requires structural knowledge to
reason about network status and arrive at reasonable solutions.

The design of a graphical interface tool for capturing structural knowledge should
not only concern structural details, but also address behavioral characteristics. This
is particularly important since the principal problem solving activities in the domain
of interest for this task (simulation, fault isolation, service restoral and performance
assessment) rely heavily upon knowledge about component and system behavior as well as i,..+

system structure. Our tool constructs a knowledge base which embodies both structural
and behavioral knowledge.

We have developed a Graphical User interface for Structural knowledge (GUS)
which provides an interactive, mouse and menu-driven interface for capturing the
structural knowledge for a specific application domain. This domain is a large scale
communications network system. Our implementation of GUS is running on a Symbolics 3670
Lisp Machine in Zetalisp. A combination of the mouse, menus, window system, and
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object-oriented flavors package provided the necessary tools for building GUS. User
interaction is primarily via manipulation of a mouse-controlled cursor. Components are
selected with the mouse for addition from a library of component icons and then
positioned upon the drawing area. Connecting components follows a similar pattern: ,
select the type of connection desired from the library of connection icons and select a
component and connect it to another component in the drawing area. Attribute values for
objects are easily edited via menus. Continuation of this process results in a complete
graphical display representing a communications network with specific equipment
configurations. Additionally, a knowledge base which embodies the captured structural
knowledge is constructed.

3.3.2 Application Domain Features

Large-scale communications networks form a physical system in which hierarchical
structural knowledge is of importance. At the highest level of the structural hierarchy 6
is subregion connectivity. A subregion is comprised of a group of sites, typically
spatially clustered, with one site designated as the control center for that particular
subregion. Only those links which extend from one subregion to another are considered
at this level of abstraction.

Subregion connectivity forms an abstracted view of the network level, the next
level of structural detail. The network level represents structure associated with link
connectivity among all sites, regardless of subregions. This level is homogeneous in
the sense that the only components represented are sites and the only represented
connections are links.

The next level of this system hierarchy is the equipment level. Within each site
represented at the network level, there is a collection of interconnected equipments
which represent a more detailed view of system level connectivity. Equipment types
found at this level are radios, multiplexors (MUX), digital patch and access systems
(DPAS), and encryption equipment (crypto). At the equipment level, the physical
topology is similar to that of the network level, except that the connection media
include links as well as supergroups, digroups, jumpers and circuits.

The design of GUS reflects three basic criteria for a knowledge representation
language. The first is expressive power. How easily can the expert communicate his
knowledge to the system? Our extensive use of domain specific icons representing
components and connections provides the requisite expressive power. These icons form a
natural vocabulary of symbols which are the foundation of a language for structural
knowledge description. The second important criterion is understandability. Can
experts understand what the system knows? Machine captured structural knowledge is
represented graphically with the same component and connection icons used by the expert
to convey structural knowledge to the machine. This commonality of structural knowledge
expression supports an environment for natural comprehension of the acquired knowledge.
The final criterion is accessibility [8]. Can the system use the knowledge it has
captured from the expert? From a "system" perspective, the purpose of this interface is
to create a system knowledge base consisting, in part, of structural knowledge. Problem k .
solving agents such as fault isolation, service restoral and performance assessment make
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heavy use of structural knowledge represented in the system knowledge base.

3.3.3 Knowledge Base Architecture

The knowledge base is central in effective problem solving activity. The fault
isolation, service restoral and performance assessment problem solving agents make
extensive use of the knowledge base during their respective problem solving activities.
Knowledge represented in the system knowledge base has an important role within each
problem solving agent. Network system structural knowledge is necessary during fault
isolation techniques in order to trace the equipment of problem areas. Exploitation of
the abstracted levels of structural knowledge naturally limits the search space.
Service restoral algorithms are dependent upon structural knowledge to determine
alternate routes. Performance assessment uses both structural knowledge and state
knowledge to accurately interpret a system perspective of performance. S

The system knowledge base contains three types of knowledge, as shown in Figure
3-3: graphical knowledge, structural knowledge and state knowledge. Graphical knowledge

System Knowledge Bose]

GohaIKnowledg Strctra Knweg State Knowledge

Configuration Knowledge Communication Path Knowledge

Subregion Configuration Knowledge -

Network Configuration Knowledge

Equipment Configuration Knowledge

Figure 3-3 Classification of Knowledge Found in the System Knowledge Base

3-15

_.._.. \



is the primary mechanism for the graphical representation of structural knowledge.
Structural knowledge embodies configuration knowledge and communication path
knowledge, each of which entails the representation of application domain objects and
how they are physically related. State knowledge represents self-descriptive attributes
and status of application domain objects. The key point to remember here is that
knowledge about structure is common and should be available to each of the different
problem solving activities.

As shown in Figure 3-3, there are three levels of configuration knowledge
corresponding to the natural hierarchy of application domain structure: subregion,
network and equipment configuration knowledge. Knowledge concerning configuration
entails specific knowledge of equipment (i.e. connectivity, spatial location), as well
as - neral knowledge such as available status information and expected behavioral
characteristics [4]. Consideration of the composite structure of components and
connections comprises a topology representing the communication network system as a
whole. This network structure forms a natural guideline for search in many instances
during the fault isolation problem solving activity. Exploitation of the structural
hierarchy permits abstraction of the search space which will expedite fault isolation
techniques. Additionally, service restoral activities make use of network structure in
the generation of alternate route plans.

Communication path knowledge entails specific combinations of equipment which
form a path between two users of a communications system. Such paths are referred to as
"circuits" in the equipment editor of GUS. Knowledge is also resident which directs the
execution of procedures in the event of user service interruption. Consequently,
communication path knowledge is used extensively by fault isolation and service restoral
problem solving algorithms.

Graphical knowledge is used for graphical representation of network and equipment
configuration knowledge. Graphical knowledge is represented in GUS utilities. The type
of information used by the GUS utility to display an item is dependent upon the
component or connection being displayed. GUS is able to display all defined component
and connection objects.

State knowledge entails all of the attributes of application domain objects which
represent object state. For example, which side of a radio is being used for
transmitting (A or B), or the status of a supergroup type connection (spare, in use, out
of service). Such knowledge is vital during all of the problem solving activities. In
addition to operational state knowledge of a specific piece of equipment, knowledge
capturing the interpretation of sympathetic alarms or anticipated alarms is also
represented.

3.3.4 Design Overview

An object-oriented approach has been chosen for implementation of structural
knowledge in the application domain. Such an approach supports a frame-based
architecture for the knowledge base. A frame-based representation was chosen to embody
the relevant knowledge because this form of knowledge representation easily adapts to _
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the physical objects of our application domain. The relevant knowledge includes the
state knowledge associated with static elements of the application domain and typical
communication system event scenarios. Event scenarios are created by the user and
provide high-level control over the communications system simulation. Advantages of B
utilizing a frame-based architecture include easily specified default values,
exploitation of inheritance properties, and procedural attachment of knowledge needed in
controlling problem solving activities.

From the perspective of integrating graphics capabilities to structural knowledge,
the frame-based architecture provided a natural solution to the problems that arise when
graphics capabilities must at the same time be both accessible and loosely coupled to
the structural knowledge. Spch a relationship between graphics capabilities and the
structural knowledge base is strongly desired because graphical display knowledge is not
desirable nor practical (from an overhead point of view) during proble:i solving
activities.

The first stage in the design involved the specification of type classifications
for objects. To conform to the structural theme of representation, four type
classifications were formulated: component-objects, connection-objects, utility-objects
and window-objects. This is illustrated in Figure 3-4. Component-objects are those

Component-Objects Connection -Objecs/

>.9

Specific Generic Specific Generic

subregion esubregion. link elinke

site *site. supergroup *supergroup*,.
radio orodios digroup *digroup,
MUX-99 *MUX-99* circuit *circuit-
MUX-98 *MUX-98*
DPAS *DPAS*
crypto ocryptoo

< Utiity-Objects > < Window-Objects-it > >
SGUS-utilUy GUS-window filer-window

Figure 3-4 Objects and Object Type Classifications S
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which model components of the application domain. Connection-objects is a collection of
objects representing different types of connection media. Utility-objects consists of
one object which is responsible for all information regarding graphical input and
output. Window-objects contains the window objects used for graphical editors and the S
file system interface.

Three fundamental functions are provided by GUS. First, structural knowledge is
captured from an expert. Second, this knowledge is interpreted and represented in the
structural knowledge base. Third, this knowledge is displayed graphically, as indicated
in Figure 3-5.

User < MaChfi

Cognitive Representation Internal Representation
of Structural Knowledge of Structural Knowledge

Capture InterpretDipa
and

Represent

Figure 3-5 Functionality in GUS

Knowledge about the structure of our application domain is captured via
interpretation of graphical input. Graphical input is performed by mousing component
icons, adding them to a configuration, and selecting connection icons in order to
connect added components. As the user draws a component or a connection with the mouse,
the system also interprets the graphical addition of this component or connection as an
addition to the internal representation of this component or connection to the knowledge
base. Graphical addition of components and connections results in the addition of
instances of objects representing these components and connections to the knowledge --

base.

Structural constraints are very important in equipment connectivity. Depending
upon the type of connection, certain endpoints are valid and others are not. Therefore,
a functional agent tightly coupled with capturing structural knowledge is necessary to
guide the user in selecting valid endpoints in the context of the type of connection
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being added. With the aid of dynamic mouse sensitivity and highlighting techniques,
these connection constraints are effectively enforced.

Upon the completion of a graphical configuration, a knowledge base representing
the configuration has been constructed. This knowledge base contains component and
connection objects, all of which are related in some physical sense. Two types of
knowledge are represented in the knowledge base: graphical and state knowledge.
Knowledge concerning graphical display encompasses all information necessary for
graphical representation of an object. State knowledge embodies specific and generic
attributes of the object. Since a frame-based knowledge representation is employed,
both types of knowledge are stored as attribute slot values of appropriate objects.

The third function provided by GUS is the display of structural knowledge.
Configurations drawn on the computer screen can be saved and loaded later as needed. A
display of the represented knowledge is comprised of the same component and connection S

icons used in the drawing of the configuration when it was saved. Each component and
connection icon is a representation of a component or connection in the knowledge base,
respectively. Via mouse manipulation and menus, inspection of icon represented object
attributes is enabled.

3.3.5 Design Implementation S

This subsection gives more detail about relevant object classes from the
perspective of system implementation. In addition, input and output techniques, mouse
sensitivity and structural hierarchy from an implementation point of view are
discussed.

3.3.5.1 Object Types

As discussed in section 3.3.4, the first stage in an object-oriented design was
the specification of object type classifications. The next design step involved the
specification of object types within each classification.

Object types of component-objects are site, radio, MUX-99, MUX-98, DPAS, and
crypto. Types of connection-objects are link, supergroup, digroup, jumper and circuit.
The single object within the utility-objects classification is GUS-utility. The
GUS-utility object is the heart of the interface and coordinates graphical display of S

component-objects and connection-objects.

The window-object classification has two object types: GUS-window and
filer-window. GUS-window is a customized window for graphical input and output and is
the basis upon which the network and equipment editors are built. User interaction is
primarily supported by a level-specific library of icons. For each level of structural
detail, there are associated icons which form the basis of user interaction.
Filer-window provides an interface window for binary file saving and loading of network I
configurations.
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3.3.5.2 Graphical Input and Output

The input device primarily employed by the interface design is the mouse. The
advantage of user input based upon pointing rather than typing a command is that seeing
something and pointing to it is significantly easier than typing. From a psychological
viewpoint this issue is known as recognition versus recall. Numerous experiments based
on distance, target size, and learning found the mouse fastest and with the lowest error
rate relative to other input devices such as joysticks and keyboards [ 16].

Graphical input by the mouse is chiefly supported by two drawing techniques. The
first technique is an implementation of a library of items to be displayed as icons on
the screen for convenient selection and placement in the drawing. There are two reasons
for the use of icons. First, icons are visually more distinctive than a set of words.
Second, an icon is able to represent more information than words in a small place, and
conservation of screen space is of high priority for items not directly part of a
drawing [ 16].

The second drawing technique implemented is rubber-banding. This technique is
utilized during the placement of a connection. It allows the user to strategically
place a connection and see what it will look like before fixing it in place. An
additional capability provided as part of the connecting process is "tacking down".
Tacking permits the user to tack a connection down at specified intermediate points (as
opposed to endpoints). This capability enables the user to specify connections other
than point-to-point straight lines; specifically, connections comprised of line
segments. Therefore, connections can always be specified so that any one segment of any
given connection is parallel or perpendicular to other existing connections.

A graphical coding technique is used for graphical output. Icons are used to
represent physical component and connection objects of the application domain. The
symbols used for component and connection icons of the icon library are the same symbols
used for graphical output. For instance, the addition of a radio to an equipment
configuration results in the output of a radio symbol to the screen. This radio symbol
represents the newly created radio object added to the system knowledge base. This
radio symbol is also the same symbol used to comprise the radio icon. Hence, the
graphical coding technique stems from the idea of each displayed graphical symbol not
only being a visual display, but also a representation of a physical object of the
application domain and an object in the knowledge base. a

3.3.5.3 Mouse Sensitivity

A common source of erroneous input in a menu-driven graphical interface is using
the mouse to select a menu command or displayed object when such an action is out of the
current context. For example, choosing to add a connection or remove a component and . -
having all object types displayed be mouse sensitive would be poor design. A solution
to such problems is dynamic control of mouse sensitivity to implement the concept of
"context sensitive" mouse sensitivity.
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By dynamically controlling the mouse sensitivity of displayed objects, we have
made the mouse context sensitive in the sense that the items which may be pointed at
with the mouse are dependent upon the current context. For example, when an icon S
command representing a component or connection is selected, a menu of commands will
appear. These commands are only associated with the type of object represented by the
icon. Component icon commands for "type" component only provide mouse sensitivity for
"type" components. Similarly, the "type" connection icon addition command only provides
mouse sensitivity for those component objects which are valid "type" connection
endpoints.

3.3.5.4 Hierarchical Structural Knowledge

Multi-level structural knowledge is an inherent property of the physical structure
of the application domain. This was previously introduced in section 3.3.2 from an
application domain perspective. In the following paragraphs, a representational view of
multi-level structural knowledge is described. The connectivity of a communications
system can be edited at three levels of structural detail, but is only displayed at two
(the network and equipment levels). The ability to represent and edit all levels of
structural knowledge was a principle design objective.

At the network level, site connectivity is represented by sites and respective
link interconnections. Icon symbols representing sites, links, and subregions each have
command menus associated with them. By selecting the appropriate icons and subsequent
commands, the user assembles a drawing representing site-to-site connectivity of a
network. Once the site connectivity has been specified, editing of either the subregion
or equipment level of structural detail is permitted. %

Subregion editing, the most abstracted level of structural detail, is achieved by
the appropriate selection of subregion icon commands. Grouping sites together and
designating a control center comprises a subregion and consequently, a new subregion
object is added to the system knowledge base.

From the network level, selection of the EQUIPMENT EDITOR icon command and
subsequent selection of a site brings the user to the equipment level. At this most
detailed level of structure, internal equipment editing and connectivity of a site can
be specified. A library of equipment icons, similar in design to the library of network
level icons, encapsulates configuration commands. While it is true that the equipment
level represents the equipment configuration at a particular site, it is important to
remember that equipment configuration is, in a sense, continuous between sites. That
is, links specified at this level of detail are representations (pseudo-links) of links
existing at the network level. A link at the network level may only be represented at
the equipment level if it is connected to the site at which equipment configuration is
taking place.

3.3.6 GUS Architectural Design

There are several important features of the design which are discussed in this
subsection. First, GUS has two basic editors, the network editor (for specification of
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site and subregion connectivity) and the equipment editor (for specification of
equipment connectivity). Second, operations are grouped into two categories: components
and connections. This decision was made because there are number of logical
similarities among operations. This grouping of operations provides an environment in
which the user may interact with the system in the same way for all operations in a
given category. Similarly, physical objects of the application domain are represented
by two groups of objects: component-objects and connection-objects. Third, a variety of
connection constraints are enforced during connection specification processes. Each
constraint is enforced in a consistant manner by using dynamic mouse sensitivity.
Guidance is provided to the user in the form of highlighting to show which displayed
objects are mouse sensitive.

Mouse sensitive objects are those displayed objects which react in a controlled
manner to the positioning of the mouse cursor over them. Certain terms derived from the
word "mouse" are commonly used in the realm of mouse pointing devices and their
application. For instance, "mousing" refers to selecting with the mouse, "moused" means
"selected", and "mouseable" means the capability to react to the mouse.

3.3.6.1 User Interaction

User interaction with GUS is primarily through mouse and menu driven commands.
Mouseable graphic icons and commands in each editor represent groups of type specific
sub-commands for the type of object represented by the icon or command. From a
graphical perspective, those graphical icon-, which represent objects that are components
of the network model are the same graphical displays used by the graphics support when
adding a component to a configuration. This visual one-to-one correspondence is theSi
foundation of our symbolic language for structural knowledge description.

User interaction is implemented by means of two physical devices, the keyboard and
the mouse. Keyboard input is limited to situations in which the user must supply data
values that cannot be predicted or guessed by the system. The majority of user input is
via the mouse, with the use of mouseable commands and graphic icons. Most often the
selection of a mouseable command or graphic icon results in presentation of more
commands in menu form. The use of menus and pointing devices is a preferred
implementation of user interaction because the user is presented a set of possible
command choices (dependent upon the current context) rather than being required to
remember commands. Additionally, only context dependent comman4,s are available for
choice, consequently, erroneous command choices are avoided.

Pop-up menus are used in GUS force user input by remaining displayed until a
choice has been made. This type of menu is typically used for selection of available
links (link addition at the equipment level) or inputs (choosing a host input number for
a connection to a piece of equipment). The item choices displayed at a particular time
in one of these menus are the result of some evaluating processes. For example, the
input menu only displays spare input numbers of a piece of equipment (those inputs which
do not already host a connection).
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3.3.6.2 Network and Equipment Level Design %

As discussed earlier, our application domain exhibits a high degree of
hierarchical structure. GUS captures structural knowledge at two levels of structural 8
detail (the network and equipment levels) via the network editor and the equipment
editor. The editing of structure in either editor is limited only by constraints
imposed by mouse state diagrams and an implied ordering of data input. In this way, the
user is given a freedom of input which is bounded by mouse state.

The network editor is an icon-based menu-driven user interface for the creation,
editing and saving of network level components, connections and subregion designations.
With simple mouse and menu commands the user can add sites and make link connections by
selecting sites as endpoints. The equipment level is similar in design to the network
level. Entering the equipment editor places the user in a familiar environment.

S

The equipment editor is an icon-based menu-driven user interface for the editing
of equipment level components and connections. It provides an easy and natural means of
configuring equipment within a site location and is accessible only through the network
editor by selecting a site at which equipment configuration is desired.

One point of interest, from a human factors perspective, is the specification of
connections between equipment. Depending upon the type of connection, certain
constraints regarding endpoints must be observed. This was not the case at the network
level since there was only one type of connection and one type of component. The only
connectivity constraint was the common sense constraint of a link not having the same
site for both endpoints. 0-

3.3.6.3 Enforcing Connection Constraints

Types of connections found at the equipment level are links, supergroups,
digroups, jumpers, and circuits. As we have mentioned, there are endpoint constraints
for each type of connection. In order to enforce connection constraints ding the
connection specification process, a combination of dynamic mouse sensitivity and
graphical highlighting is employed. Highlighting valid choices makes it easy for the
user to identify mouse sensitive components. For any connection type the user selects,
only those pieces of equipment which are valid endpoints are highlighted and mouse
sensitive. Which endpoints are valid is dependent upon the type of connection, which _
endpoint is being specified, and the presence of spare inputs or outputs to host the %.-
connection.

In order to provide design guidelines for connection specification, two general
constraints are imposed on the user during the connection specification process. First,
a connection will always start at a piece of equipment. Second, if both endpoints of a
connection are constrained to be equipment, then the first endpoint will always start at
the piece of equipment which hosts the connection as an input.

Link addition or removal at the equipment level does not actually add or remove a
link to the knowledge base. Instead, equipment level links can be thought of
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conceptually as "pseudo-links" or representations of links at the network level. The
network level provides abstracted information concerning network connectivity that
consists of link connectivity for all sites, whereas the equipment level provides -
connectivity information only for the site at which equipment configuration is taking
place. Additionally, the equipment level provides information consisting of which
radios each link is connected to and complete equipment connectivity at that particular
site. Consequently, link connections hold the special status in that they are the only

type of connection which bridges the network and equipment levels of representation.

Several link connection constraints must be satisfied. A site can only have as
many links specified in its equipment configuration as there are links connected to it
in the network configuration. Link connections (at the equipment level) always start at
a radio and end in free space. Only one link may be connected to a radio. Note that
there may be more radios than links at the network level, but there will remain extra
radios which are not connected to any links. Consequently, these radios would not be
part of the equipment connectivity and would constitute an incomplete representation of
a network system.

A special type of connectivity specification is supported for configuring DPASes.
DPASes only host digroup connections. The function of a DPAS is to interconnect
digroups at the channel level of connectivity. DPAS configuration is supported by a
DPAS configuration editor window. This window is physically comprised of an input
completion pane at the top of the window, with the remaining bottom three-fourths
divided column-wise into an input pane on the left and a configuration pane on the
right.

3.3.6.4 Circuit Representation

A circuit is a complete path (consisting of connections and equipment) from one
MUX-98's input to another MUX-98's input. There is at least one level of multiplexing
involved in each circuit. Circuit specification is easily performed by the user, though
it has been a very complex task from a design and development perspective.

The addition of circuits should only take place after all sites have been
configured at the equipment level. This is because circuit addition requires a complete
path from the originating MUX-98 to the destination MUX-98. If an incomplete path is
discovered during the path seeking algorithm, then the addition process for that
particular circuit is unconditionally aborted and information about the problem area is
presented to the user. One side benefit of circuit specification is thus knowledge base.,- ..
consistency checking. Successful completion of the circuit path seeking algorithm
indicates that the specified equipment connectivity for that circuit's path is logically
sound and meets connectivity constraints imposed upon circuit paths.

3.3.7 Evaluation

The intent of this portion of the effort was to develop a graphical interface tool
for the construction of a structural knowledge base representing domain specific
knowledge fo a communications network system. In its current implementation, GUS is
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proving itself to be an effective tool for knowledge base construction. Design criteria
and objectives have been satisfied and in some cases exceeded.

Although the present design was directed toward a specific application domain, the
design principles employed are domain independent. The motivation behind the
development of a generic interface tool for capturing and representing structural
knowledge of a variety of application domains is obvious.

The careful attention paid to modularity in designing GUS has resulted in a system
which can potentially serve as a prototype for a generic interface tool. Specifically,
the use of an objected-oriented approach lends itself to a domain independent extension
by allowing the possibility of user-defined object classes. A conceptual perspective of
such a generic implementation would require a domain information acquisition tool to be
built on top of the design skeleton of GUS. This acquisition tool should permit the
very high-level design of an interface with a limited design choice methodology. That S
is, the construction and tailoring of an interface to a particular application domain
should follow a predetermined design process. An obvious design process model is the
design process followed for the creation of the application specific tool GUS.

Although the responsibilities of the acquisition tool are numerous, there are
significant responsibilities worth noting here. Each step of the design specification
process incurred by the acquisition tool should be closer to functional requirements of
the application domain. For instance, design could start with conceptual levels of
detail and finish with connectivity constraints. The determination of conceptual levels
of structural detail of the application domain is a key step which. has a significant
impact on the interface design. Reflective of the object-oriented approach to design,
the next step is recognition of component and connection type objects. Thus, a library
of domain specific objects and their attributes should be created and represented.
These objects should then be associated with predefined object classes which have
generic operation capabilities. In this way, domain specific objects are created and
acquire operational capabilities (from an interface perspective) by being associated
with a predefined object class. The creation of mouse sensitive regions for domain
pecific objects and the creation and association of graphic icons and textual commands

to these mouse sensitive regions must also be supported. In general, menu types and
their options should be reflective of those menus used by GUS. However, high-level
creation of certain menu types with user-specified items should be a user-option of the
design process.

A limitation encountered with this implementation of GUS is that the window size
constrains the size and complexity of a represented network system at both the network
and equipment levels. This is a consequence of component objects having a fixed
location for display. Investigation of zooming and panning techniques and their
potential application to this specific problem would be appropriate. At present,
absolute screen pixel coordinates are used for representation and display of objects.
Zooming could be implemented by using the same absolute representation and a scaling
technique on absolute screen coordinates for display. Implementation of panning follows
from the scaling technique for zooming. Depending upon the current scale, displayed
object coordinates would be relative to a scaled "home" pixel coordinate. Various
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regions of the display could then be viewed by detection of mouse cursor movement in
editor window margins (similar to scrolling window capabilities). Objects displayed
would be displayed relative to the home coordinate whether it is visible or not. The
addition of zooming and panning capabilities permits the display of network systems with
real world longitude and latitude locations and realistic proportions. Thus, the
representation and modeling of existing network systems and the creation and modeling of
hypothetical network systems closely related to real world coordinates would be a
salient characteristic of the interface tool.

Another point of criticism is configuration completeness. Although consistency
checking is provided by connection constraints, it is still possibie for a user to
construct an incorrect configuration from a completeness perspective. Incomplete
configurations are detected when specifying circuits and indicate to the user that the
current network structure and corresponding knowledge base must be modified.

3.3.8 Comparison With Existing Tools

An existing knowledge representation tool in use today is Intellicorp's KEE
(Knowledge Engineering Environment) system. KEE offers many graphics tools, some of
which have many conceptual and functional characteristics similar to those of the
graphical interface we have developed.

The KEE system is a development environment for building models and reasoning
about and analyzing those models. Within the KEE environment there are graphics tools
which help users construct graphic images, image libraries, and interfaces via an
object-oriented implementation. Thus, KEE has a frame-based knowledge base consisting
of objects and their associated attribute slots. Some of these tools include
KEEpictures, Activelmages, and SimKit. KEEpictures assists the user in constructing
customized, graphic images and interfaces. Activelmages is a library of images
constructed with KEEpictures. Of particular interest is the tool SimKit. With SimKit
and a library of graphical simulation objects, non-programmers can easily build, run and
modify simulations with simple mouse-and-menu commands.

The interesting aspect of SimKit, for our purposes, is not its simulation
abilities, but the mechanism and procedure by which models are built and represented.
Users are able to interact with the application by manipulating images with a
mouse-controlled cursor. A library of icons representing simulation components is used -
to build complete simulation models. As components are selected from the library's menu
of icons for addition to the simulation model, new members of the class of the
simulation component represented by the icon are automatically created and added to the
model's knowledge base. Attribute slots are utilized to represent the modeled objects'
attributes and their corresponding values. Additionally, connections between component
models are represented by slots. The salient feature here is that the explicit addition
of objects to the knowledge base is avoided by having knowledge base modification be a
consequence of graphical editing with the mouse.

In GUS user interaction is primarily through mouse-controlled manipulation of a
library of domain specific icons. These icons represent the components and connections 5
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of the application domain. As components are selected from the library of icons for
addition, new instances of objects represented by the icon are automatically created and
added to the system knowledge base. This is a concept held in common with SimKit. A
frame-based knowledge base implementation is also utilized with slots and default values
representing modeled physical object attributes. Another major commonality is that
knowledge base building is completed implicitly by the addition of component and
connection icons to comprise the physical architecture of the target system.

A limitation of our graphical interface is that it is domain specific. The
library of domain specific icons is fixed and not modifiable via the interface tool
itself. However, this is not a limitation of the graphics capabilities of SimKit.
SimKit permits loading in of a library of icons. Custom application libraries can be
created with the use of KEEpictures and ActiveImages.

A design goal of our interface, which is not apparent in SimKit, is to have
knowledge concerning graphical display of a modeled physical object be loosely coupled
to structural knowledge of the system. Although implementation and the extent to which
SimKit addresses this goal is unclear, it is believed that our approach is unique. A
common approach to coupling graphical display capabilities is via inheritance by mixing
in graphical display objects to objects of the application domain. Our approach does
not follow this conventional technique, but instead allows the structural knowledge to
be represented completely independently from the graphical display knowledge.

S
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3.4 Multistage Negotiation In Distributed Planning

3.4.1 Introduction

We have developed a multistage negotiation protocol that is useful for
cooperatively resolving resource allocation conflicts which arise in a distributed
network of semi-autonomous problem solving nodes. The primary contributions of such a
negotiation protocol are that it makes it possible to detect and to resolve subgoal
interactions in a distributed environment with limited communication bandwidth and no
single locus of control. Furthermore, it permits a distributed problem solving system
to detect when it is operating in an overconstrained situation and act to remedy the
situation by reaching a satisficing [17] solution.

Multistage negotiation is specifically not intended as a mechanism for goal
decomposition in the system, though some goal decomposition is a natural result of
negotiation in the context of this paradigm. Our protocol may be viewed as a
generalization of the contract net protocol [5, 20, 21]. The contract net was devised
as a mechanism for accomplishing task distribution among agents in a distributed problem
solving system. Task distribution takes place through a negotiation process involving
contractor task announcement followed by bids from competing subcontractors and finally
announcement of awards. Multistage negotiation generalizes this protocol by recognizing
the need to iteratively exchange inferences drawn by an agent about the impact of its
own choice of what local tasks to perform in satisfaction of global goals.

Multistage negotiation produces a cooperation strategy similar in character to the
Functionally Accurate/Cooperative paradigm [14] in which agents iteratively exchange
tentative and high level partial results of their local subtasks. This strategy results
in solutions which are incrementally constructed to converge on a set of complete local
solutions which are globally consistent. Before describing multistage negotiation in
detail, we first motivate the need for a new cooperation paradigm.

3.4.2 Motivation For Multistage Negotiation

The distributed environment in which our negotiation takes place is a network of
loosely coupled problem solving agents in which no agent has a complete and accurate
view of the state of the network. Problem solving activity is initiated through the
instantiation of one or more top level goals at agents in the network. Each top level
goal is instantiated locally at an agent and is not necessarily known to other agents.
Since the conditions which give rise to goal instantiation may be observed at more than
one place in the network, the same goal may be instantiated by two or more agents
independently. The desired solution to the problem is any one that satisfies all of the
top level goals.

In this type of distributed network, it is very expensive to provide a complete
global view to each agent in the system. Communication bandwidth is generally limited.
Exchange of enough information to permit each agent to construct and maintain its own
accurate global view would be prohibitively expensive. In addition, progress in problem
solving would be significantly slower due to a decrease in parallelism attributable to
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the need for synchronization in building a complete view. Multistage negotiation has
been devised as a paradigm for cooperation among agents attempting to solve a planning
problem in this distributed environment. In the remainder of this section, we explain
the contributions of multistage negotiation in solving distributed planning problems.

One of the major difficulties which arises in planning systems is detecting the
presence of subgoal interactions and determining the impact of those interactions. In
distributed applications, the problem is exacerbated because no agent has complete
knowledge concerning all goals and subgoals present in the problem solving system. For
example, subgoals initiated by one node may interact with other subgoals initiated
elsewhere, unknown to the first node. These interactions may become quite complex and
may not be visible to any single node in the network. A key objective of our multistage
negotiation is to allow nodes to exchange sufficient information so that these
interactions are detected and handled in a reasonable manner. This objective is
achieved by exchanging knowledge about the nonlocal impact of an agent's proposed local
action without requiring the exchange of detailed local state information.

Another significant issue that arises in planning is recognizing when goals are
not attainable. When satisfaction of a goal requires the commitment of resources,
conflicts may arise among goals competing for limited resources. A planning problem is
overconstrained if satisfaction of one top level goal precludes the satisfaction of
others. Detection of an overconstrained situation in a distributed environment is,
again, particularly difficult because no agent is aware of all goals, and each agent has
only a limited view of the complete set of conflicts. When a number of alternative
choices for goal satisfaction are known, detection of an overconstrained situation is
not possible without either multistage negotiation or a global view.

In an overconstrained problem, a planning system must reformulate what it seeks as
a satisfactory solution. Having several equally important top level goals, the planner
must decide which ones should be sacrificed to permit satisfaction of others. Since the
distributed network has no agent with sufficient knowledge to serve as an intelligent
arbitrator, a consensus must be reached. Multistage negotiation provides a mechanism v
for reaching a consensus among those nodes with conflicting goals concerning an
acceptable satisficing solution.

In the following sections, we first describe the problem in more detail,
discussing a specific application as an example which illustrates the nature of the
planning problem. We then discuss two models of problem solving relevant to this
domain: one which is oriented from the perspective of a single goal and one which is
node centered. In the fifth section we discuss a multistage negotiation protocol which :.

utilizes these models and has been incorporated in a distributed planner for this
problem. We illustrate this protocol with the aid of a simple example. Finally, we
discuss ways in which this research extends existing work. VUi

3.4.3 A Specific Application and an Example

In the context of network management and system control for communications .lrx-
systems, a restoral plan consists of a logical sequence of control actions which
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allocate scarce resources in order to restore end-to-end user connectivity (circuits).
These actions allocate or reallocate equipment and link capacity along some route to
specific circuits and are subject to a number of constraints. For example, a circuit is
assigned to one of several priority categories. In attempting to restore service,
resources belonging to circuits of a lower priority may be preempted. Depending upon
the type of circuit, there may be special equipment needs which are not necessarily
present at all sites. Available routes through the network may be constrained by lack
of certain equipment items such as switches or multiplexers. Thus generation of a
restoral plan for a single circuit uses conventional route finding algorithms [231 in
combination with knowledge about circuit types and priority, needed equipment, network
topology, and equipment configuration at all sites along the restoral path. For any
specific circuit there will generally be many alternative restoral plans, so the
planning system must then attempt to select a combination of alternatives which restores
all circuits. 0

There are a number of features of this planning problem that make it interesting.
There is implicit in this domain the assumption that the knowledge of each agent is
incomplete. It may also be inaccurate and inconsistent with that of other agents.
Restoial plans must be generated in a distributed fashion because no agent has a global
view and reliability issues mitigate against delegating the responsibility for planning
to a central node. The overall system goal is one of determining plans for restoral of
all interrupted service. Although each agent implicitly knows this goal, it generally
will not know all of the specific circuits which require restoral. The planning system
need not satisfy the overall goal to be successful. In many instances, the overall goal
may be infeasible, and thus a satisfactory plan will fall short of reaching this goal. 4

The distributed planning problem addressed in this paper and our approach to
solving it can best be understood with the aid of an example. A simplified diagram of a
small network is shown in Figure 3-6. In this phase of our work, we use a simplified
model of a communications system which disregards any constraints arising from equipment
configuration at a site. There are five subregions, labeled A, B, C, D, and E, shown.
Each site is designated by a letter-number pair, where the letter indicates the
subregion in which the site is located. The communication network links are designated
by L-number. The control facility for each subregion is located at the site marked with
an "*". Each control facility has a planning agent to restore interrupted service. It
should be noted that a separate communication network, of substantially lower bandwidth,
is not shown, but is assumed to interconnect the control facilities for the purpose of
exchanging messages among the agents.
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Figure 3-6 Example Network A

For the purposes of describing the restoral problem, we assume that there is an
equipment malfunction at station B-2 that fails all communication using link L-11. We
also assume that each link can handle at most two circuits and that there are four
circuits established at the time of the supposed failure. These are described in Table a
3-1 by listing the sites and links along the route of each circuit.

ckt-1 (A-1 - :L-1:- A-2- :L-12: - B-1 - :L-11: - B-2)

ckt-2 (B-1 - :L-11: - B-2 - :L-10: - C-3 - :L-5: - D-2)

ckt-3 (E-1 - :L-6: - C-2 - :L-4: - C-3 - :L-5: - D-2 - :L-7: - D-3)

ckt-4 (B-1 - :L-12: - A-2 :L-2: C-I :L-3: C-2)

Table 3-1 Circuit Descriptions
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To simplify the presentation, these circuits all have the same restoration priority so
that none of them should be preferred over the others for restoral in the event of
service disruption.

As a result of the presumed failure, two circuits are disrupted, namely ckt-1 and
ckt-2 (both use L-11 to get from B-1 to B-2). The planning activity is initiated when
an agent observes disruption of a circuit terminating within its subregion and
instantiates a restoral goal. In this example, the restoral goals are autonomously
instantiated in subregion A (for ckt-1), subregion B (for ckt-1 and ckt-2) and subregion
D (for ckt-2). Each agent initially has only the following knowledge about each circuit
terminating in its subregion:

(a) a circuit identifier that is unique within the network,
(b) a priority or degree of urgency for restoral,
(c) detailed routing of this circuit within this agent's area of responsibility,
(d) the end stations of the circuit and the agents responsible for them.

In addition, each agent has detailed knowledge concerning the status of resources
resident in its subregion.

The first phase of the planning process is plan generation, and since it uses only 0
one stage of negotiation, as in contract nets [5, 20, 21] we shall not consider the
details of plan generation here. When viewed from a global perspective, plan generation
produces two alternative restoral plans for each circuit. Each plan is represented in
Table 3-2 as a list of alternating sites and links, traversing the proposed restoral
path.

Plans for goal gI to restore ckt-1:

gl/pl (A-1 - :L-1: - A-2 - :L-2: - C-1 - :L-3: - C-2 - :L-4: - C-3
:L-5: - D-2 - :L-7: - D-3 - :L-8: - D-I - :L-9: - B-2)

gl/p2 (A-I - :L-1: - A-2 - :L-2: - C-1 - :L-3: - C-2 - :L-4: - C-3
:L-10: -B-2)

Plans for goal g2 to restore ckt-2:

g2/pl (B-i - :L-12: - A-2 - :L-2: - C-I - :L-3: - C-2 - :L-4: - C-3
:L-10: - B-2 - :L-9: - D-1 - :L-8: - D-3 - :L-7: - D-2)

g2/p2 (B-I - :L-12: - A-2 - :L-2: - C-1 - :L-3: - C-2 - :L-4: - C-3
:L-5: - D-2)

Table 3-2 Alternative Plans

To clarify the example, we have adopted a naming convention for goals and alternative V
plans which incorporates the circuit name and plan number; thus the two alternative
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plans for restoring circuit ckt-I are designated gl/pl and gl/p2. It is essential to
remember that these are global plans which have been generated in a distributed manner,
and no single agent necessarily knows of all plans or any one complete plan.

As a result of plan generation, a node produces local alternative plan fragments
which may be used to satisfy global goals. Each global plan listed in Table 3-2 is
composed of several fragments distributed over a subset of the agents. This is
illustrated in Table 3-3.

Goal Plan Frag. Resources Used Cost -4

gl 1A L-l, L-2 9
g2 7A L-2, L- 12 9

Agent A

gi 2B L-9 9
5B L-10 6

g2 8B L-9, L-10, L-12 9
liB L-12 6

Agent B

gi 3C L-2, L-3, L-4, L-5 9 ,."

6C L-2, L-3, L-4, L-10 6
g2 9C L-2, L-3, L-4, L-10 9 .''

12C L-2, L-3, L-4, L-5 6
AgentC 

gl 4D L-5, L-7, L-8, L-9 9
g2 lOD L-7, L-8, L-9 9

13D L-5 6
Agent D

Table 3-3 Local Knowledge About Plan Fragments

This table summarizes the knowledge each agent has about goals, alternative plan
fragments, and local resources. Plan fragments are numbered and each is identified by a
letter indicating the responsible agent. Note that agents are not explicitly aware of
global alternative plans, but are only aware of local alternatives. For example, even
though Agent A has resources needed by both gl/pl and gl/p2, the local plan fragment is
the same in both cases, and thus Agent A "sees" only one alternative plan for goal gl.

This example is considerably oversimplified in order to focus attention on the
significant characteristics of this planning problem and to illustrate the cooperation
strategy which results from multistage negotiation. The communication network has been
simplified so that link capacity is the only resource, and thus there are no constraints
arising from local equipment configurations. The number of circuits and link capacities
are also much smaller than is typical. Since only two top level goals exist, the
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subgoal interactions are simple and can be recognized in only one step. In a more
realistic problem, subgoal interactions often involve multiple dependencies and may
require several steps of negotiation to detect and resolve.

The features of the planning problem which are important for the discussion of
multistage negotiation in this paper are summarized below:

(a) Goals are autonomously generated at nodes in the system.

(b) The same system goal may be generated at more than one node, independently.

(c) Knowledge about local resource availability and potential goal interactions at
each node differs from that at other nodes.

(d) Goal satisfaction in general requires nonlocal resources.

(e) The planning problem being addressed is, in general, overconstrained. A choice
to satisfy some goals may preclude the satisfaction of others, so choice
heuristics are necessary.

S
(f) Goals are prioritized, but this does not imply a total ordering with respect to

priority.

3.4.4 Model Of Problem Solving

The planning problem discussed in the previous section can be viewed in a broader
context. In this section we characterize a problem solving model in which multistage
negotiation is useful. The search space for a problem of this kind can be considered
from two points of view: a task or goal centered perspective and a node centered
perspective. Each of these ways of viewing the search space provides a different set of
insights with respect to problem solving. .v

When viewed from the perspective of the system goal, the global problem appears as
an AND-OR tree progressing from the system goal (at the root), down through goals and
plans, to local plan fragments distributed among the agents. A goal centered view of
our example problem is illustrated in Figure 3-7. Two goals have been instantiated,
with four alternative plans and several local plan fragments. Of course, since this is
a distributed environment, no single agent has a complete view of this tree. Observe
that each agent is aware of both goals gl and g2, but agent D is only aware of one plan
fragment for gl, the one which is a component of gl/pl.

.. '
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Figure 3-7 Global Search Space

An agent may not simply satisfy a local goal by choosing any plan fragment, but
must coordinate its choice so that it is compatible with those of other agents.
Formulation of a plan as a conjunction of plan fragments induces a set of compatibility
constraints on the local choices an agent makes in satisfaction of global goals. In
Figure 3-7 we show the plan fragments interconnected by dashed lines. These dashed A
lines indicate the local knowledge an agent has about which other agents are involved in
compatibility constraint relations with its own plan fragments. Observe that an agent
generally does not have complete knowledge about these compatibility sets. In our
application domain, these constraints involved shared resources between two agents.

From a node centered perspective, plan fragment selection is constrained by local ,

resource availability. An agent cannot choose to execute a set of alternative plan
fragments that require more local resources than are available. For example, agent B's -

local resources permit selection of any pair of its own plan fragments in satisfaction
of gl and g2, whereas agents A, C, and D t. h can select only one plan fragment. The - .

resulting feasibility tree known to each ageit is shown in Figure 3-8. In this figure, .
resource constraints associated with goals and plan fragments are enclosed by ovals and
connected to the appropriate objects with dashed line:. Restoral goals initiated in a
subregion are designated with an S
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Figure 3-8 Local Feasibility Trees
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From each agent's perspective, the search is over a group of alternatives subject
to a set of local resource constraints and a set of compatibility constraints imposed by
actions of other agents. Multistage negotiation provides a mechanism by which agents
coordinate their actions in selecting plans subject to both resource and compatibility
constraints. As additional constraints are added to an agent's base of knowledge, its
local feasibility tree is augmented to reflect what it has learned.

3.4.5 Multistage Negotiation

In this section, we describe the multistage negotiation protocol we have developed
and give an example of its application in the distributed planning problem which has
been discussed. We first treat the protocol at a very high level, discussing the
general strategy. We then provide more detail as to phases of planning and the role of
negotiation in each. The section is concluded with a detailed trace of negotiation and
reasoning in each agent pertinent to our simple example.

3.4.5.1 High Level Protocol

Multistage negotiation provides a means by which an agent can acquire enough
knowledge to reason about the impact of local activity on nonlocal state and modify its
behavior accordingly. When problem solving activity is initiated, agents first engage
in a phase of plan generation. Each agent ascertains what alternatives for partial goal
satisfaction are locally possible and tenders contracts to appropriate agents for
furthering satisfaction of the goals needed to complete these plans. On completion of
this phase, a space of alternative plans has been constructed which is'distributed among
the agents, with each agent only having knowledge about its local plan fragments. An
agent then examines the goals it instantiated and makes a tentative commitment to the
highest rated feasible set of plan fragments relative to these goals. It subsequently
issues requests for confirmation of that commitment to agents who hold the contracts for
completion of these plan fragments.

Each agent may receive two kinds of communications from other agents: 1) requests
for confirmation of other agents' tentative commitments, and 2) responses concerning the
impact of its own proposed commitments on others. Impact of local actions is reported
a,. confirmation that a tentative local choice is a good one or as negative information 4"

reflecting nonlocal resource conflict. The agent incorporates this new knowledge into VIN
its local feasibility tree. It rerates its own local goals using the new knowledge and 0|
possibly retracts its tentative resource commitment in order to make a more informed
choice. This process of information exchange continues until a consistent set of
choices can be confirmed.

Termination of the negotiation process can be done using system-wide criteria or
it can be accomplished in a diffuse manner. If global termination criteria are desired
in an application, some form of token passing mechanism [7, 9, 25] can be used to detect
that the applicable termination criteria have been met. When synchronized global
ternination is not required in an application, the negotiation can be terminated by an
"irrevocable" commitment of resources. A node initiates plan execution in accordance
with its negotiated tentative commitment at some time after it has no pending activities 0
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and no work to do for other agents.

3.4.5.2 Mechanics of Negotiation

When a node begins its planning activity, it has knowledge of a set of top level
goals which have been locally instantiated. A space of plans to satisfy each of these
goals is formulated during plan generation without regard for any subgoal interaction
problems. After plan generation, each node is aware of two kinds of goals: primary
goals (or p-goals) and secondary goals (or s-goals). In our application, p-goals are ---

those instantiated locally by an agent in response to an observed outage of a circuit
for which the agent has primary responsibility (because the circuit terminates in the
agent's subregion). These are of enhanced importance to this agent because they relate
to system goals which must be satisfied by this particular agent if they are to be
satisfied at all. An agent's s-goals are those which have been instantiated as a result
of a contract with some other agent. An agent regards each of its s-goals as a possible
alternative to be utilized in satisfaction of some other agent's p-goal.

A plan commitment phase involving multistage negotiation is initiated next. As
this phase begins, each node has knowledge about all of the p-goals and s-goals it has
instantiated. Relative to each of its goals, it knows a number of alternatives for goal 0
satisfiction. An alternative is comprised of a local plan fragment, points of
interaction with other agents (relative to that plan fragment), and a measure of the
cost of the alternative (to be used in making heuristic decisions). Negotiation leading
to a commitment proceeds along the following lines.

1. Each node examines its own p-goals, making a tentative commitment to the highest
rated set of locally feasible plan fragments for p-goals (s-goals are not
considered at this point because some other agent has corresponding p-goals).

2. Each node requests that other agents attempt to confirm a plan choice consistent
with its commitment. Note that an agent need only communicate with agents who
can provide input relevant to this tentative commitment.

3. A node examines its incoming message queue for communications from other nodes.
Requests for confirmation of other agents' tentative commitments are handled by
adding the relevant s-goals to a set of active goals. Responses to this agent's
own requests are incorporated in the local feasibility tree and used as
additional knowledge in making revisions to its tentative commitment.

4. The set of active goals consists of all the local p-goals together with those
s-goals that have been added (in step 3). The agent rates the alternatives
associated with active goals based on their cost, any confirming evidence that
the alternative is a good choice, any negative evidence in the form of nonlocal
conflict information, and the importance of the goal (p-goal, s-goal, etc. ). A %J, b-%

revised tentative commitment is made to a highest rated set of locally P

consistent alternatives for active goals. In general, this may involve
decisions to add plan fragments to the tentative commitment and to delete plan
fragments from the old tentative commitment. Messages reflecting any changes in
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the tentative commitment and perceived conflicts with that commitment are
transmitted to the appropriate agents.

5. The incoming message queue is examined again aind activity proceeds as d.cribed S
above (from step 3). The process of aggregating knowledge about nonlocal '

conflicts continues until a node is aware of all conflicts in which its plan
fragments are a contributing factor.

Two issues need clarification at this point. One deals with the question of
termination and the other is concerned with the quality of the result obtained through
negotiation (relative to optimality).

Negotiation in this framework continues as long as there are any pending
activities in an agent. The only way a situation leading to nontermination could arise
involves an agent's making a tentative commitment and subsequently entering a cycle of
retracting and remaking that commitment indefinitely. It is not reasonable to expect
that an agent should never retract a tentative commitment. It is also not reasonable to
expect that an agent would never decide, based on new knowledge, to recommit to an
alternative it had previously rejected. An agent's local reasoning must be able to
detect when it is making a tentative commitment it has previously made with no new
knowledge. Negotiation activity in an agent terminates either when it has no pending
activity and no incoming communications or if an attempt is made to return to a previous
commitment with no new knowledge from other agents. Endless loops of commitment and
decommitment are prevented through this mechanism.

The other issue of importance at this point is related to the quality of the
result obtained through negotiation. In the initial negotiation stage, each agent
examines only its p-goals and makes a tentative commitment to a locally feasible set of
plan fragments in partial satisfaction of those goals. Since each agent is considering
just its p-goals at this stage, the only reason for an agent's electing not to attempt
satisfaction of some top level goal is that two or more of these goals are locally known
to be infeasible. (This corresponds to an overconstrained problem.)

In subsequent stages of negotiation, both p-goals and relevant s-goals are
considered in making new tentative commitments. The reasoning strategy employed at each
agent will only decide to forego commitment to one of its p-goals if it has learned that
satisfaction of this p-goal precludes the satisfaction of one or more other p-goals
elsewhere in the system. If the system goal of satisfying all of the p-goals ,r
instantiated by agents in the network is feasible, no agent will ever be forced to
forego satisfaction of one of its p-goals (because no agent will ever learn that its
p-goal precludes others), and a desired solution will be found. If, on the other hand,
the problem is overconstrained, some set of p-goals cannot be satisfied and the system
tries to satisfy as many as it can. While there is no guarantee of optimality, the
heuristics employed should ensure that a reasonably thorough search is made.

To make these concepts concrete, multistage negotiation is applied to the
simplified planning problem discussed in the previous sections. 0
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3.4.5.3 Example

We return to our example of nlanning activity, assuming that each agent has the
knowledge depicted in the appropriate part of Figure 3-8. A summary of the transactions
that occur during negotiation to achieve plan selection is shown in Table 3-4. This
table is segmented by agent and by "time slice" to convey a sense of progress in problem
solving through negotiation. The notational conventions are relatively simple.
Tentative commitment to a locally known activity and the associated communication issued
to an appropriate agent is denoted in the form (plan fragment name; message -> agent).
Exchange of conflict information is indicated in the form (conflict; type of conflict ->
agent). To make the trace easier to follow, each received message is noted in the form
(source agent -> message).

As is evident in Table 3-4 negotiation begins with tentative commitments to
alternatives in agents A, B, and D. Though the problem is overconstrained (it is not
possible to restore both ckt-1 and ckt-2), no agent is yet aware of that fact. In
response to the initial tentative commitments, there is activity in agents A and C.
Agent A knows that it cannot act to satisfy both gl and g2, but it does not know if this
precludes satisfaction of g2 (since g2 is an s-goal, there might exist another global
plan not requiring any action by A). Since A recognizes the need to attempt
satisfaction of its own p-goal first, agent A informs agent B there is a conflict
between what B requested and satisfaction of one of A's p-goals. Thus A has given B the
knowledge that the plan fragment B selected would force A to forego one of its p-goals.

Agent C has now received three communications requesting that plan fragments be
extended. It observes that it can effect a plan completion for gl, satisfying both the
request from A and the request from B. It also observes that it cannot satisfy both gl
and g2 with use of its locally known plan fragments due to local resource constraints.
Since it has the opportunity to complete a plan for ckt-1 and not for ckt-2, it elects
to tentatively commit its resources to plan fragment 6C. Messages reflecting this

commitment are formulated and transmitted to A and B, while a message indicating the
conflict in C is sent to D.

As a result of this second round of communications, activity in subregions B and D
is concerned with exploring the remaining alternatives they have for restoral of ckt-2.
An acceptable plan for ckt- 1 is already reflected in tentative commitments. Agent B
elects to try plan fragment 8B and agent D elects to try 10D. Agent B learns that an
attempt to satisfy g2 via 8B also fails in A, so it now knows that the problem is ,.
overconstrained. Based on the fact that a way of satisfying g l has already been
located, B elects to forego satisfaction of g2 and advises D that it should also give up
on g2. Negotiation terminates with tentative commitments reflecting a plan choice for
gl.
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Agent A Agent B Agent C Agent D

IA; OK? -> C IliB; OK? -> A 13D; OK?->C 
5B; OK? ->C

B -> OK? IB A ->OK? IA
B -> OK? 5B

conflict; D ->OK? 13D
(liB AND not p-goal g1)
-> B match 6C with

IA and 5B

IA is OK ->A
5B is OK -> B S

conflict;
(13D AND not gl via C)
-> D

C -> IA is OK A-> C->
(I IB AND not p-goal gl) (13D AND not g I

via C)
C -> 5B is OK

8B; OK? -> A 10D; OK? -> B

B ->OK^ 8B D -> OK? 10D

conflict; 8B; OK? -> C
(8B AND not p-goal gI) %
-> B

A-> B ->OK? 8B ', , ;
(8B AND not p-goal gI)

B knows gI and g2 conflict;
not both possible (8B AND not gl via C)

->B

(not both gl and g2)
-> D

C-> B->
(8B AND not gI via C) (not both gI and g2)

%W %I

Table 3-4 Summary of Transactions During Negotiation 1,0 .
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In concluding this section we summarize, by "time slice", changes to the local
feasibility trees that take place during the negotiation illustrated in Table 3-4.

Slice 1: .0
No changes

Slice 2:
No changes in constraints by A
6C is tentatively committed to a complete plan by C

Slice 3:
1A is marked as tentatively satisfying gl by A
5B is marked as tentatively satisfying gl by B
Agent B adds the constraint (not gI) to 1 B
Agent D adds the constraint (not gl via C) to 13D (Note that in this example, the
new constraint on 13D is, in fact, redundant. In other examples, with a more
complex set of goals, new constraints propagated in this way often provide
additional information.)

Slice 4:
No changes

Slice 5:
Agent B adds the constraint (not gl) to 8B
Agent B propagates the constraint (nci gl) on 8B and 1 1B to their parent, g2.
Agent B now knows the problem is overconstrained.

Slice 6:
Agent D modifies the constraint (not gl) on goal g2* to (not gl*).
Agent D now knows the problem is overconstrained.

This example illustrates ways in which knowledge is integrated into the local
feasibility tree as it is acquired through negotiation. It shows how knowledge
aggregated at the level of plan segments can be propagated in drawing inferences
concerning interactions at the goal level. It also shows how the network of agents can
become aware that it has an overconstrained problem.

3.4.6 Concluding Remarks

We have developed a new paradigm for cooperation in distributed problem solving
systems. This paradigm incorporates features found in two cooperation strategies
treated in the literature: the contract net protocol [5, 20, 21] and the FA/C paradigm
[14]. It has been devised to permit an agent in a distributed problem solving system to
acquire enough knowledge to reason about the impact of local activity on nonlocal state
and to modify its behavior accordingly.
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Three characteristics of distributed planning problems motivate development of a
more general cooperation paradigm. First, subgoal interaction problems that arise in
the context of a distributed planning system in which agents do not have a global view
are very difficult to detect and even more difficult to handle in a reasonable way. .
Second, many application domains embody planning problems that are overconstrained.
When these planning problems are addressed by a network of planning agents, it is
essential that the system be able to determine whether or not the problem is
overconstrained. Third, when the planning problem is overconstrained, it is necessary
for the agents involved to arrive at an agreement as to a set of goals whose
satisfaction is regarded as an acceptable solution to the problem at hand. None of
these issues can be resolved in the context of the previously proposed cooperation
paradigms without the exchange of sufficient knowledge as to permit each agent to
construct a global view.

Another factor motivating formulation of a more general cooperation paradigm is S
the observation that many application domains have characteristics that distinguish them
from other multi-agent planning problems which have been investigated. The strategies
suggested by Lansky [13] and Georgoff [11] dealing with planning for a multiple agent
domain by a centralized planner are not applicable in situations where there is no
central planner. In addition, the agents in our networks are not motivated purely by
self interest. They are interested in cooperating to achieve some goals pertinent to
system performance. For this reason, the metaphor proposed by Genesereth and others
[10] does not represent the domain characteristics. It should be noted, however, that
our metaphor can be adapted for use in networks of agents which are selfish (as long as
they do not lie a great deal).

The mechanisms presented in this paper are related to the techniques that have
been utilized in conventional planning systems. Each agent in our system builds a data
structure analogous to the Table of Multiple Effects used by NOAH [ 18] and NONLIN [24] .
in detecting subgoal interactions. This structure is incrementally built using
knowledge gleaned through negotiation. In detecting and resolving conflicts, a form of
criticism analogous to that performed by NOAH's Resolve Conflicts critic is employed. ,
Criticism is necessary in our distributed problem solving systems for the same reason it
was needed in NOAH - decisions are made initially based on local criteria, whereas
nonlocal conditions affect the viability of those decisions. Unlike NOAH (and like
NONLIN), alternatives are not discarded after they have been rejected. Backtracking in
the form of revised tentative commitment is a feature of the protocol. a

In many planning problems, the constraints arising from resource availability are
very important in determining a satisfactory solution to the planning problem. We have
found that resource constraints play a crucial role in our system as well. The ability
to reason about resources is critical in determining adequate solutions. This was
recognized in the design of SIPE [261. Since we have no central planner, the mechanisms
for reasoning about resources are somewhat different from those employed in SIPE, but .6
resources as a factor in problem solving are just as important to multistage negotiation
as they were in SIPE.

S
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